名字用做物理量单位的科学家,化作单位永流传

作者: 美高梅游戏官网娱乐  发布:2019-12-26

物理光年玄月蚀日,物理学家小朋友们在delta星球玩捉迷藏游戏。爱因斯坦小朋友蒙上眼睛喊道:“一、二、三…”,其他物理学家小朋友赶紧各自找个黑洞躲了起来。等他一睁眼,却发现牛顿小朋友正若无其事地看着他。“抓到你了,我抓到牛顿了!”爱因斯坦憨厚地笑了。狡黠的牛顿却辩解道:“不,你抓的不是牛顿,而是帕斯卡!”他指向脚下那块一平米见方的木板,因为一个牛顿站在一平方米上就等于一个帕斯卡。爱因斯坦小朋友很无辜,只好悻悻钻进时空飞车去找帕斯卡做他的接替人了。以上故事纯属虚构,如有雷同,皆属波函数坍缩所致。牛顿在故事中诡辩的奥秘在于:牛顿和帕斯卡即是人名,也是物理单位名。牛顿本人当然不能变身为帕斯卡,但一牛顿力和一平方米面积相除就可以得到一帕斯卡压强,这就是用人名做单位的有趣之处。科学史上,有很多用人名命名的公式、定理、单位、材料、天体、生物体和元素名称等等。物理学中也会用人名作为单位以纪念该科学家伟大贡献,这种情况在电磁学领域最为盛行,下面我们就来翻阅一下这些化作物理单位的物理学家们。

1、牛顿(Isaas Newton,1642—1727) 英国物理学家、天文学家、数学家和自然哲学家,经典力学体系的奠基人,被称为力学之父。在物理学的很多分支都有很大的成就。他在伽利略等人工作的基础上,对力学进行了系统的研究,建立了牛顿三定律,奠定了经典力学的基础。他还发展了开普勒等人的工作,发现了万有引力定律。在光学方面,他于1666年用三棱镜分析日光,发现白光是由不同颜色的光构成的,成为光谱分析的基础,于1675年观察的牛顿环。关于光的本性,他主张光的微粒说。在热学方面,他确定了冷却定律;在天文方面,1671年创制了反射望远镜,初步考察了行星运动规律,解释了潮汐现象,说明了岁差现象等。牛顿还最早提出了发射人造卫星的设想。牛顿在数学上的最大功绩是和莱布尼兹同时发明了微积分。后人为纪念他,将力的单位定名为牛顿。 2、帕斯卡(Blaise.Pascal,1623—1662) 法国数学家和物理学家。帕斯卡在物理方面的主要成就就是对流体静力学和大气压强的研究。1653年发现了液体传递压强的规律,但到1663年他去世后一年后才正式发表。他还指出盛有液体的容器的器壁所受的压强也跟深度有关,还做了大气压随高度变化及虹吸现象等实验。此外,还证明了空气有质量,驳倒了当时流行的“大自然厌恶真空”的错误说法。他父亲是一位受人尊敬的数学家,在其精心地教育下,帕斯卡很小的时候就精通欧几里得几何,他自己独立地发现出欧几里得的前32条定理,而且顺序也完全正确。12岁独自发现了“三角形的内角和等于180度”。17岁时帕斯卡写成了数学水平很高的《圆锥截线论》一文,这是他研究德扎尔格关于综合射影几何的经典工作的结果。1642年,刚满19岁的他,设计制造了世界上第一架机械式计算装置──使用齿轮进行加减运算的计算机,原只是想帮助他父亲计算税收用,这是他为了减轻父亲计算中的负担,动脑筋想出来的,却因此而闻名于当时,它成为后来的计算机的雏型。帕斯卡对文学也极有造诣,对法国文学颇有影响,1962年世界和平理事会曾推荐他为被纪念的世界名人之一。为了纪念他,用他的名字来命名压强的单位。计算机领域更不会忘记帕斯卡的贡献,1971年面世的PASCAL语言,也是为了纪念这位先驱,使帕斯卡的英名长留在电脑时代里。 3、开尔文(Lord.Kelvin,1824—1907) 英国物理学家,热力学的主要奠基人之一。原名威廉·汤姆逊(William.Thomson),由于他功劳卓著,1892年被英国女王封为勋爵。因为他任职的格拉斯哥大学在开尔文河畔,大家又称他“开尔文勋爵”他也就改名为开尔文。他在物理学的各个领域,尤其是热学、电磁学及工程应用技术方面作出了巨大的贡献。1848年创立绝对温标,即热力学温标;1851年他和克劳修斯各自独立地发现了热力学第二定律。1852年他和焦耳一起发现了焦耳-汤姆逊效应,这一发现成为获得低温的主要方法之一,广泛地应用到低温技术中。此外他制成了静电计、镜式电流计、双臂电桥、虹吸自动记录电报信号仪等多种精密测量仪器。他十分重视理论联系实际,善于把教学、科研、工业应用结合在一起。在工程技术中,装设第一条大西洋海底电缆是他最出名的一项工作。开尔文一生不懈地为科学事业奋斗的精神,永远为万人敬仰。人们为了纪念他,把国际单位制中的热力学温度的单位定做“开尔文”。 4、摄尔修斯(A.Celsius,1701—1744) 瑞典天文学家。创立了摄氏温标。是现在常用的温度单位。 5、瓦特(James Watt,1736—1819) 英国发明家。对当时已出现的原始蒸汽机作了一系列重大的改进,大大提高了蒸汽机的效率和可靠性,使蒸汽机成了一种实用动力,从而引起一场产业革命。瓦特还取得了其他一些成就。例如他引入了第一个功率单位:马力;他发明了压容图,用图示的形式表明蒸汽压力如何随汽缸的有效容积而变动,后由于克拉珀龙的工作得以在热力学、热机效率研究中广泛应用;他还发明了复写墨水及其他一些仪器。为了纪念他,功率的单位用瓦特命名。 6、库仑(Charlse-Augustin de Coulomb1736—1806) 法国物理学家、发明家。在固体摩擦、静电学和磁学方面都有重大贡献。1785年他发现并总结出静止电荷间相互作用力的规律,即库仑定律。库仑对机械摩擦也有深入的研究,发明了不少磁学仪器,如库仑扭秤等。库仑不仅在力学和电学上都做出了重大的贡献,做为一名工程师,他在工程方面也作出过重要的贡献。他曾设计了一种水下作业法。这种作业法类似于现代的沉箱,它是应用在桥梁等水下建筑施工中的一种很重要的方法。为了纪念他,电量的单位被命名为库仑。 7、伏打(ALessandro Voltu,1745—1827) 意大利物理学家,发明家。发现了两种不同的金属接触时产生电势差的现象,以此发明了伏打电池;还发现了电流使水分解的现象,奠定了电化学的基础,他还发明了起电盘。为纪念他,电压的单位被命名为伏特。 8、欧姆(Jeorg Simon Ohm,1787—1854) 德国物理学家。曾做过多年中学教师,在极缺少仪器设备的条件下发现了欧姆定律。他独立地用库仑的方法制造了电流扭力秤,用来测量电流强度,引入和定义了电动势、电流强度和电阻的精确概念,他受热传导研究的启发,对电流的流动和热量的流动进行科学类比,以找出相似的规律。为了纪念他,电阻的单位用欧姆命名。 9、焦耳(James Prescott Joule 1818—1889) 英国物理学家。他没上过学,他的科学知识几乎全是靠自学获得的。早期研究电学和磁学,1837年发表了关于这方面的论文而引起人们的注意。1840年,写出了《电流析热》的论文,阐明了电流的热效应的规律,即焦耳—楞次定律,焦耳的最大贡献就是电热和机械当量的研究,1843年在英国学术协会上作了《论电磁热效应和热功当量》的报告,指出自然界的能量是不能消灭的,消耗了机械能,总能得到相当的热能。他用自己精心设计的量热器,经过近四十年,用各种方法进行四百多次实验,精确地测得热功当量的数值,为建立能的转化和守恒定律作出了贡献,是热力学第一定律的奠基人之一。为了纪念他,在国际单位制中,将能量或功的单位命名为焦耳。 10、法拉第(Michael Faraday,1791—1867) 英国物理学家和化学家1831年发现电磁感应现象,确立了电磁感应的基本定律(法拉第电磁感应定律),这是现代电工学的基础。他还发现当时认为是各种不同形式的电,本质上都是相同的。1833~1834年发现了电解定律,这是电荷不连续性最早的有力证据。他反对超距作用,认为作用的传递必须通过某种媒介,并用实验证明电介质在静电现象中对作用力的影响。他还详细地研究了电场和磁场,得到许多观点,后来经麦克斯韦等人的概括总结和实验证实,才为人们所认识。为了纪念他,电容的单位就是以他的名字命名的。 11、安培(Andre—Marie Ampere,1775—1836) 法国物理学家、数学家,电动力学的奠基人之一。没有上过任何学校,依靠自学,他掌握了各方面的知识。他的兴趣广泛,早年是在数学方面,后来又作了些化学研究。由于他高超的数学造诣,使他成为将数学分析应用于分子物理学方面的先驱。他的研究领域还涉及植物学、光学、心理学、伦理学、哲学、科学分类学等方面。他的主要科学工作是在电磁学上,对电磁学的基本原理有许多重要发现。如安培力公式,安培定则,安培环路定律等都是他发现的。他还首先提出了磁体的磁性是由各个分子的环行电流所决定的。由于他在电学方面的研究成果十分突出,被后人誉为“电学中的牛顿”,以他的名字安培命名的电流单位,为国际制的基本单位之一。 12、特斯拉(Nicola Tesla,1856—1943) 南斯拉夫血统的美国电工学家、发明家。在科学技术上的最大贡献是开创了交流电系统,促进了交流电的广泛应用。他发明了交流发电机。后来,他开创了特斯拉电气公司,从事交流发电机、电动机、变压器的生产,并进行高频技术研究,发明了高频发电机和高频变压器。1893年,他在芝加哥举行的世界博览会上用交流电作了出色的表演,并用他制成的“特斯拉线圈”证明了交流电的优点和安全性。1889年,特斯拉在美国哥伦比亚,实现了从科罗拉多斯普林斯至纽约的高压输电实验。从此,交流电开始进入实用阶段。此后,他还从事高频电热医疗器械、无线电广播、微波传输电能、电视广播等方面的研制。 为了纪念他,在他百年纪念时,国际电气技术协会决定,把国际单位制中磁感应强度的单位命名为特斯拉。 13、高斯(Carl Friedrich Gaus—zlig,1777—1855) 德国数学家、物理学家和天文学家。高斯长期从事于数学并将数学应用于物理学、天文学和大地测量学等领域的研究,著述丰富,成就甚多。在各领域的主要成就有: 物理学和地磁学中,关于静电学、温差电和摩擦电的研究、利用绝对单位法则量度非力学量以及地磁分布的理论研究。 利用几何学知识研究光学系统近轴光线行为和成像,建立高斯定理光学。 天文学和大地测量学中,如小行星轨道的计算,地球大小和形状的理论研究等。 结合试验数据的测算,发展了概率统计理论和误差理论,发明了最小二乘法,引入高斯定理误差曲线。此外,在纯数学方面,对数论、代数、几何学的若干基本定理作出严格证明。为纪念他在电磁学领域的卓越贡献,在电磁学量的CGS单位制中,磁感应强度单位命名为高斯。 14、韦伯(Wilhelm Eduard Weber,1804—1891) 德国物理学家。韦伯在电磁学上的贡献是多方面的。韦伯在建立电学单位的绝对测量方面卓有成效。他提出了电流强度、电量和电动势的绝对单位和测量方法;根据安培的电动力学公式提出了电流强度的电动力学单位;还提出了电阻的绝对单位。韦伯与柯尔劳施合作测定了电量的电磁单位对静电单位的比值,发现这个比值等于3×108m/s,接近于光速。但是他们没有注意到这个联系。1832年,高斯在韦伯协助下提出了磁学量的绝对单位。为了进行研究,他发明了许多电磁仪器。1841年发明了既可测量地磁强度又可测量电流强度的绝对电磁学单位的双线电流表;1846年发明了既可用来确定电流强度的电动力学单位又可用来测量交流电功率的电功率表;1853年发明了测量地磁强度垂直分量的地磁感应器。1833年,他们发明了第一台有线电报机。后人为了纪念韦伯的科学贡献,以他的姓氏为磁通量的国际制单位命名。 15、亨利(Henry Joseph,1797—1878) 美国物理学家。他曾改进电磁铁,发明了继电器,并用于电报中。亨利最大的贡献是发现了通电线圈的自感现象,并提出重要的自感定律。电子自动打火装置就是根据这个定律发明的。他还研究了自感现象,并在法拉第之前发现了电磁感应现象,在赫兹之前发现了无线电波。为了纪念他,电感的单位用亨利命名。 16、赫兹(H.R.Hertz,1875—1894) 德国物理学家。1887年首先发表了关于电磁波的发生和接收的实验论文,总结了电磁波的传播规律,从而奠定了无线电通信的基础,并且,他还肯定了电磁波和光波一样,具有发反射、折射和偏振等性质,验证了麦克斯韦关于光波是一种电磁波的理论。同样,他还首先发现了光电效应。为了纪念他,频率的单位被命名为赫兹。 17、奥斯特(Hans Christian Oersted,1777—1851) 丹麦物理学家。受父亲的影响,奥斯特很早就对药物学、化学实验、物理学有浓厚的兴趣。1820年发现了电流的磁效应,奥斯特的这一发现,被作为划时代的一页载入了史册。为了纪念他,美国从1937年起每年向最杰出的物理教师颁发“奥斯特奖章”。从1934年起,磁场强度的单位命名为奥斯特。 18、贝尔(Bell,Alexander Graham,1847-1922) 美国发明家。贝尔主要研究语音学。在波士顿大学任教期间,进行过利用电流传送声音试验。1876年发明电话。贝尔还发明收音机、听度计、无痛检查人体内金属的仪器(因此获海德尔堡大学医学博士学位)、扁平式和圆筒式录唱机,第一个制成唱片。为纪念贝尔为人类作出的贡献,后人把电学和声学中计量功率或功率密度比值的单位定为“贝尔”。在工程计算上常以贝尔的十分之一为单位称为分贝。 19、西门子(Ernst Werner von Siemens,1816-1892) 德国工程学家、企业家、电动机、发电机和指南针式电报机的发明人,西门子公司创始人。西门子发现了电动原理,建成了世界上第一个气压传送装置,解决了静电荷相关的一些科学问题,并对铺设海底电缆提出了理论根据。为了纪念他,西门子的名字被用来命名电导率的单位。

库仑(charlse coulomb,1736~1806,法国物理学家)。 库仑对电磁学最大的贡献在于静电力和静磁力的精确测量。他发明了库仑扭秤用于测量静电力,用一根细如头发丝的金属丝线悬吊测量金属球,细丝的扭力矩将和扭转角度成比例关系,通过测量不同电荷在不同距离下相互作用时细丝的扭转角度就可以比较电荷作用力的大小。据此,库仑总结出了静电相互作用定律也即库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同种名电荷相斥,异种电荷相吸(异种电荷相互作用关系是通过电摆实验确定的)。后来,库仑还将静电力公式推广到磁相互作用,描述了两个磁极之间的相互作用形式。库仑定律是经典电磁学的基础,为电磁场理论的建立开拓了道路。库仑在科学上的贡献不仅局限于静电磁学方面,他还在工程力学做出了杰出的工作。库仑出身在一个富庶家庭,毕业于巴黎军事工程学院并在西印度马提尼克皇家工程公司工作了八年,然后到部队服役。在军队里,库仑做了许多关于建筑力学方面的研究,他提出了计算物体应力和应力分布的方法。库仑还对摩擦力进行了研究,提出了有关润滑剂的理论,表述出摩擦定律、滚动定律和滑动定律。为了纪念库仑的伟大贡献,人们将电量的单位称为“库仑”,符号为c,1库仑=1安培?秒。

伏特(alessandro volta,1745~1827,意大利物理学家)。伏特出身于一个富有的天主教家庭,从小就过着悠闲舒适的生活,他对诗歌和自然科学同样具有浓厚的兴趣。年青时的伏特就喜欢做一些科学实验,并经常和当时知名的科学家写信交流思想。伏特的第一个重要发明是静电起电盘——把一块导电板放在一个树脂圆盘上端,然后用一个绝缘柄与金属板接触,使它接地,再把它举起来,通过摩擦起电就把金属板充电到高电势,这个方法可以用来使莱顿瓶持续不断地充电。他还据此设计了一种相对静电计用于测量电势差。凭借静电盘的发明,29岁的伏特成为了科莫皇家学校教授,并在1779年起任帕维亚大学物理学教授。随后伏特开始在瑞士等欧洲各国游历,拜访了伏尔泰、拉普拉斯和拉瓦锡等人。1791年伽伐尼实验发现静电会使青蛙的肌肉发生收缩,伏特对此问题进行了深入研究。他发现不同的金属之间相互接触会出现电势差,而金属和液体之间接触则没有电势差,于是他把泡在电解质液中的不同金属板堆积获得了较高的电势差,这个电堆能够持续产生很强的电流。这便是人类历史上第一个电池——伏特电堆,正是有了电堆提供的持续电源才使得后期的电学研究顺利进行。在电学研究以外,伏特还发现过沼气并制作了沼气灯。虽然出身天主教家庭,但伏特却和一个歌女同居多年而在五十岁左右和另一个女人结了婚。伏特在巴黎时候在拿破仑面前表演了神奇的电堆,拿破仑非常赏识他并赐予他金质奖章,甚至到他要求退休时,拿破仑没有同意反而授予他伯爵称号并赏赐更多的荣誉和金钱。然而,拿破仑的倒台对伏特的生活并没有多大的影响,因为他只关心自己的科学研究而对政治漠然的态度赢得了大家的尊敬。1827年,隐居八年之久的伏特在别墅去世,为纪念他在电学上的成就,人们将电动势的单位取名为伏特,符号为v。

安培(andré-marie ampère,1775~1836,法国物理学和化学家)。安培出生于富商家庭,他父亲深受卢梭教育理论的影响,从小就给他设立了一个私人图书馆,记忆力超群、数学天赋出众的安培也因此得到了非常优秀的教育。从中学教师到大学教授,到帝国大学总监,再到法国科学院院士,安培的学术之路可谓顺风顺水。也正是如此,安培在自然科学方面做出了一系列贡献。1820年,奥斯特发现电流使得磁针偏转,激起了物理学界关于电和磁关系问题研究的热潮。安培在得知奥斯特实验结果后第一时间重复了奥斯特的实验,并更加深入地研究了电流和磁、电流和电流之间的相互作用。他明确指出磁针偏转方向和电流方向关系符合右手定则,两条互不接触的平行载流导线之间存相互作用。安培总结了两电流元之间的相互作用同两电流元的大小、间距以及相对取向之间的关系,后来人们称之为安培定律。安培还发现电流在线圈中流动的时候表现出的磁性并制出了第一个螺线管,在此基础上发明了度量电流的电流计。安培并不满足这些实验研究成果,而是更进一步提出了分子电流假说。他认为磁体的分子周围存在环形的分子电流,使得磁体分子像一个个小磁极,磁极的有序排列使得磁体整体呈现磁性。在当时人们还不认识原子内部结构的情况下,安培的分子电流假说是非常有前瞻性的,也为后来人们对磁性起源的认识提供了一些线索(电子的磁性来自于轨道磁矩和自旋磁矩,材料的磁性主要是电子磁矩的有序排列形成的)。安培除了电学上的伟大成就,他还研究过概率论和积分偏微分方程等高深的数学问题,他几乎和戴维同时发现氯和碘,比阿伏伽德罗晚三年但独立导出了阿伏伽德罗定律,论证过恒温下体积和压强的关系,还试图寻找各类元素分类和排序的规律。安培的逸闻趣事也有不少,有一次安培在塞纳河边他边走路边思考问题,沿途拣鹅卵石并扔出去玩,然而等到了学校却发现兜里的怀表变成了鹅卵石,原来怀表被不幸扔进了塞纳河;又有一次,他在逛街途中想起了一个科学问题,于是拿起随身的粉笔就在街头的一块“黑板”上演算起来,没想到“黑板”开始动了并越跑越远,安培却拿着粉笔满大街追起了“黑板”,直到实在追不上了才停下,原来黑板是一辆马车的车厢后板。1836年安培在法国马赛逝世,享年61岁。为纪念安培在电学上的巨大贡献,人们将电流强度的单位取为安培,符号为a。

奥斯特(hans oersted,1777~1851,丹麦物理学家)。如果非要在电磁学领域找第一人的话,那就非奥斯特莫属。1820年,奥斯特发现电流磁效应并发表《论磁针的电流撞击实验》一篇短论文,引发了欧洲物理界对电和磁动力学关系的一系列研究,并因此逐步建立了电磁学。奥斯特深受康德和谢林哲学的影响,为此他深信电和磁之间必然存在某种联系。通过仔细研究库仑的实验结果,奥斯特认识到静电和静磁确实不能相互转化,于是开始思考运动的电荷即电流与磁的关系。一次物理讲演中,奥斯特意外发现导线在通电的瞬间使得旁边的磁针发生了跳动,激动万分的他紧紧抓住这个现象深入研究。通过大量的实验,奥斯特发现闭合回路中电流确实能够使磁针发生偏转,并且偏转方向与电流和磁针的相对位形有关系,同时他也确认电流不能与非磁性物质发生相互作用。除了电磁学以外,奥斯特还对化学亲和力、温差电效应、提炼金属铝、抗磁性等方面进行了研究。他是一名热情洋溢且非常注重实验科研的科学家,也是一位卓越的演说家和科普家,在他的倡议下创建了丹麦第一个物理实验室。奥斯特还和小他28岁的丹麦童话作家安徒生有着亲密的友谊,安徒生经常是奥斯特家的座上宾,每个圣诞节都给他家里装饰圣诞树并写诗在圣诞礼物上。奥斯特曾是安徒生报考哥本哈根大学时的主考官,两人由师生关系演化成了朋友关系。安徒生甚至一度暗恋奥斯特的小女儿,而他的童话《两兄弟》正是以奥斯特他们两兄弟为原型的。奥斯特给安徒生讲述的科学哲学观影响了他的童话,而安徒生的文学气质也感染了奥斯特写诗歌和散文,两人的友谊可谓是自然科学与人文科学碰撞中闪亮的火花。1851年3月9日奥斯特在哥本哈根逝世,享年74岁。1908年,丹麦设立“奥斯特奖章”以表彰做出重大贡献的物理学家。1937年美国物理教师协会设立“奥斯特奖章”,用以奖励在物理教学上做出贡献的物理教师。1934年,人们在高斯单位制中采用“奥斯特”作为磁场强度的单位,符号为oe,以纪念这位伟大的物理学家。

高斯(johann carl gauss,1777~1855,德国数学家、物理学家)。 “数学王子”从小就展露出他神奇的数学天赋,尽管贫寒的工匠家庭,但因他聪敏过人的头脑而得到了一些贵族的资助进了学校受教育。高斯先后在carolinum学院和哥廷根大学学习,在他20岁以前就有了许多令人惊叹的数学成就。高斯的母亲是个文盲,父亲只是个小工匠,据说三岁的高斯就能帮助父亲纠正一些账目的错误。还有个故事是说在高斯9岁的时候,老师出了一道自然数从1到100的求和题,高斯用极短的时间就给出了正确的结果5050。根据史书记载,实际上那个求和的等差数列要更为复杂,是81297+81495+......+100899(公差198,项数100),这恐怕是中学生都要为此抓耳挠腮半天的题目,而高斯则能够在头脑中进行快速复杂的运算得出正确结论。高斯在数学上的贡献有很多:15岁的高斯独立发现了二项式定理的一般形式和数论上的“二次互反律”;18岁的高斯发现了质数分布定理和最小二乘法;针对多次测量的数据结果分布,高斯得到一个概率性质分布函数——标准正态分布也称“高斯分布”;19岁的高斯仅用直尺和圆规便做出了规则的正十七边形,超越了阿基米德和牛顿。5年后,高斯又证明了形如"fermat素数"边数的正多边形可以由尺规作图完成;他证明了n阶的代数方程必有n个复数解(即代数基本定理或“高斯定理”),导出了三角形全等定理的概念。在天体物理研究上,为了计算谷神星的轨道,他引进或证明了诸多数学定理,天文学家在他预测的轨道上发现了这颗小行星,从此高斯声名鹊起。1818年至1826年,高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度,并因此还发明了日光反射仪,可以将光束反射至大约450公里外的地方。为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,高斯发展了曲面和投影的理论,并因此他成为了微分几何的重要始祖人物之一。他还独立地提出了不能证明欧氏几何的平行公设具有“物理的”必然性,但他的非欧几何理论并未发表。19世纪初的电磁学热潮也吸引了这位数学天才,50多岁的高斯发明的磁强计,现在被称为“高斯计”。他和比他小27岁的韦伯一起进行电磁学的研究,他们制作了第一个电话电报系统,从理论上画出了第一张地磁场图并给出了地磁南极和地磁北极的位置,在次年被美国科学家实验观测证实。63岁高龄的高斯甚至决定开始学习俄语,并且他迅速掌握了这门外语。高斯喜欢随时做笔记,但他只把成熟的理论付诸发表,在他去世后人们发现了20多部笔记,据说这也只是高斯笔记的一部分而已。1855年2月23日清晨,一代数学巨星高斯陨落。为了纪念高斯在科学上的贡献,人们取磁感应强度单位为高斯,符号为g。在电磁学单位制中,形成了一套标准单位制称为“高斯制”,它和国际标准单位制的换算关系比较复杂,其中磁感应强度的换算关系是:10000 高斯=1特斯拉,磁场强度换算关系是1000 安培/米=4π奥斯特。

欧姆(georg simon ohm,1787~1854,德国物理学家)。 欧姆的父亲是一个自学数学物理知识的锁匠,这位父亲教育出了一名著名物理学家乔治.欧姆和一名著名数学家马丁.欧姆。16岁的欧姆便到埃尔兰根大学,然而却因为家庭困难而辍学,一直到他26岁才完成博士学业。欧姆的职业生涯有很长的一段都是中学教师,缺乏实验仪器设备,但这并不磨灭他对科学的热情,为了进行电学实验他经常亲手制作仪器。根据奥斯特发现的电流磁效应和库仑发明的静电扭秤,他制作了一个电流扭秤用以测量电流大小。为了避免伏特电堆的电动势不稳定性,他采用温差电池做电源,测量了不同长度导线在相同电压下的导电电流大小,得出了欧姆定律(具体故事请参考[水煮物理] :电荷的“买路财”)。欧姆定律及其公式的发现,给电学的计算带来了很大的方便。人们为纪念他,将电阻的单位定为欧姆,简称“欧”,符号为ω。

本文由美高梅手机登录网站发布于美高梅游戏官网娱乐,转载请注明出处:名字用做物理量单位的科学家,化作单位永流传

关键词:

上一篇:没有了
下一篇:美高梅游戏官网娱乐权力的游戏